超碰日韩_免费黄色的视频_亚洲+变态+欧美+另类+精品_国产一区二区三区在线看_caoporn免费_黄色国产视频

今年高考英語AI得分134,復旦武大校友這項研究有點意思

網絡整理 分享 時間: 收藏本文

今年高考英語AI得分134,復旦武大校友這項研究有點意思

明敏 發自 凹非寺

量子位 | 公眾號 QbitAI

在挑戰寫語文作文后,AI現在又盯上了高考英語。

結果好家伙,今年高考英語卷(全國甲卷)一上手,就拿了134分。

而且不是偶然的超常發揮。

在2023-2023年的10套真題測試中,AI的分數都在125分以上,最高紀錄為138.5分,聽力和閱讀理解還拿過滿分。

這就是由CMU學者提出的,高考英語測試AI系統Qin。

它的參數量只有GPT-3的16分之一,平均成績卻比GPT-3高出15分。

其背后的秘訣名叫重構預訓練 (reStructured Pre-training),是作者提出的一種新學習范式。

具體來看,就是把維基百科、YouTube等平臺的信息重新提取重構,再喂給AI進行訓練,由此讓AI具有更強的泛化能力。

兩位學者用足足100多頁的論文,深入解釋了這一新范式。

那么,這一范式到底講了什么?

我們來深扒一下~

什么是重構預訓練?

論文題目很簡單,就叫reStructured Pre-training(重構預訓練,RST)。

核心觀點凝練來說就是一句話,要重視數據?。?/p>

作者認為,這個世界上有價值的信息無處不在,而目前的AI系統并沒有充分利用數據中的信息。

比如像維基百科,Github,里面包含了各種可以供模型學習的信號:實體,關系,文本摘要,文本主題等。這些信號之前由于技術瓶頸都沒有被考慮。

所以,作者在本文中提出了一種方法,可以用神經網絡統一地存儲和訪問包含各種類型信息的數據。

他們以信號為單位、結構化地表示數據,這很類似于數據科學里我們常常將數據構造成表或JSON格式,然后通過專門的語言(如SQL)來檢索所需的信息。

具體來看,這里的信號,其實就是指數據中的有用信息。

比如在“莫扎特生于薩爾茨堡”這句話中,“莫扎特”、“薩爾茨堡”就是信號。

然后,就需要在各種平臺上挖掘數據、提取信號,作者把這個過程比作了從礦山里尋寶。

接下來,利用prompt方法,就能將這些來自不同地方的信號統一成一種形式。

最后,再將這些重組的數據集成并存儲到語言模型中。

這樣一來,該研究就能從10個數據源中,統一26種不同類型的信號,讓模型獲得很強的泛化能力。

結果表明,在多個數據集中,RST-T、RST-A零樣本學習的表現,都優于GPT-3的少樣本學習性能。

而為了更進一步測試新方法的表現,作者還想到了讓AI做高考題的方法。

他們表示,現在很多工作方法走的都是漢化GPT-3的思路,在評估的應用場景上也是跟隨OpenAI、DeepMind。

比如GLUE測評基準、蛋白質折疊評分等。

基于對當下AI模型發展的觀察,作者認為可以開辟出一條新的賽道試試,所以就想到了用高考給AI練練手。

他們找來了前后幾年共10套試卷進行標注,請高中老師來進行打分。

像聽力/識圖理解這樣的題目,還找來機器視覺、語音識別領域的學者幫忙。

最終,煉出了這套高考英語AI模型,也可以叫她為Qin。

從測試結果可以看到,Qin絕對是學霸級別了,10套卷子成績都高于T0pp和GPT-3。

此外,作者還提出了高考benchmark。

他們覺得當下很多評價基準的任務都很單一,大多沒有實用價值,和人類情況對比也比較困難。

而高考題目既涵蓋了各種各樣的知識點,還直接有人類分數來做比對,可以說是一箭雙雕了。

NLP的第五范式?

如果從更深層次來看,作者認為,重構預訓練或許會成為NLP的一種新范式,即把預訓練/微調過程視為數據存儲/訪問過程。

此前,作者將NLP的發展總結成了4種范式:

P1. 非神經網絡時代的完全監督學習 (Fully Supervised Learning, Non-Neural Network)P2. 基于神經網絡的完全監督學習 (Fully Supervised Learning, Neural Network)P3. 預訓練,精調范式 (Pre-train, Fine-tune)P4. 預訓練,提示,預測范式(Pre-train, Prompt, Predict)

但是基于當下對NLP發展的觀察,他們認為或許之后可以以一種data-centric的方式來看待問題。

也就是,預訓/精調、few-shot/zero-shot等概念的差異化會更加模糊,核心只關注一個點——

有價值的信息有多少、能利用多少。

此外,他們還提出了一個NLP進化假說。

其中的核心思想是,技術發展方向總是順著這樣的——做更少的事實現更好、更通用的系統。

作者認為,NLP經歷了特征工程、架構工程、目標工程、提示工程,當下正在朝著數據工程方向發展。

復旦武大校友打造

本篇論文的一作為Weizhe Yuan。

她本科畢業于武漢大學,后赴卡內基梅隆大學讀研,學習數據科學專業。

研究方向集中在NLP任務的文本生成和評估。

去年,她被AAAI 2023、NeurIPS 2023分別接收了一篇論文,還獲得了ACL 2023 Best Demo Paper Award。

論文的通訊作者為卡內基梅隆大學語言技術研究所(LTI)的博士后研究員劉鵬飛。

他于2023年在復旦大學計算機系獲得博士學位,師從邱錫鵬教授、黃萱菁教授。

研究興趣包括NLP模型可解釋性、遷移學習、任務學習等。

博士期間,他包攬了各種計算機領域的獎學金,包括IBM博士獎學金、微軟學者獎學金、騰訊人工智能獎學金、百度獎學金。

One More Thing

值得一提的是,劉鵬飛在和我們介紹這項工作時,直言“最初我們就沒打算拿去投稿”。

這是因為他們不想讓會議論文的格式限制了構思論文的想象力。

我們決定把這篇論文當作一個故事來講,并給“讀者”一種看電影的體驗。

這也是為什么我們在第三頁,設置了一個“觀影模式“的全景圖。

就是為了帶著大家去了解NLP發展的歷史,以及我們所展望的未來是怎樣的,讓每一個研究者都能有一定的代入感,感受到自己去帶領著預訓練語言模型們(PLMs)通過礦山尋寶走向更好明天的一個過程。

論文結尾,還藏了一些驚喜彩蛋。

比如PLMs主題表情包:

還有結尾的插畫:

這么看,100多頁的論文讀起來也不會累了~

論文地址:

https://arxiv.org/abs/2206.11147

— 完 —

量子位 QbitAI · 頭條號簽約

主站蜘蛛池模板: 国产成人亚洲综合 | 欧洲精品在线观看 | 懂色一区二区三区av片 | 麻豆av在线播放 | 亚洲精品第一 | 久久91久久久久麻豆精品 | 亚洲一区免费在线观看 | av男人的天堂在线 | 国产精品视频专区 | 国产高清在线a视频大全 | 亚洲婷婷免费 | 久久99视频这里只有精品 | 国内自拍网站 | 日本a级片网站 | 欧美国产精品一区二区 | 国产在线看片 | 欧美日韩国产一区二区三区不卡 | 欧美精品一区在线 | 欧美日韩免费在线 | 黄色片com| 不卡黄色 | 激情五月婷婷丁香 | 九九久久免费 | 久久亚洲综合 | 日本黄色大片免费看 | 国产精品99久久久久久久vr | 福利片网址 | 午夜精品久久久久久久久久久久久 | 黄色片网站在线看 | 午夜影院在线 | 欧美日韩网站 | 96成人爽a毛片一区二区 | 一区二区国产精品 | 欧美另类国产 | 久久99精品久久久 | 日韩欧美在线看 | 国产区免费在线观看 | 久久久久久久久久久免费av | 午夜av电影 | 日本三级中国三级99人妇网站 | 国产精品欧美日韩在线观看 |