四年級下冊乘法分配律的教學反思 乘法分配律教學反思
每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編幫大家整理的優質范文,僅供參考,大家一起來看看吧。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇一
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發現什么規律?通過觀察算式,尋找規律。讓學生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不是急于告訴學生答案,而是讓學生自己通過舉例加以驗證。學生興趣濃厚,這里既培養了學生的猜測能力,又培養了學生驗證猜測的能力。從而讓學生知道乘法分配律給大家計算帶來的便利。從而感受數學的美。
這堂課由具體到抽象,大多需要學生體驗得來,上下來感覺很好,學生很投入,似乎都掌握了,可在練習時還是發現了一些問題。如:學生在學習時知道“分別”的意思,也提醒大家注意,但在實際運用中,還是出現了漏乘的現象。針對這一現象我認為在練習課時要加以改進。注重從學生的實際出發,把數學知識和實際生活緊密聯系起來,讓學生在不斷的感悟和體驗中學習知識。
乘法分配律在乘法的運算定律中是一個比較難理解的定律,因此在上課前我作了充分的準備。因為學生在三年級時已經學過求長方形周長的兩種通過一節課的學習,學生對乘法分配律的大致規律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規律,有部分學生就感到很為難了。感覺他們只能意會不能言傳般。課本中關于乘法分配律只有一個植樹的例題,但是練習中有關乘法分配律的運用卻靈活而多變,學生們應用起來有些不知所措,針對這種現狀,我把乘法分配律的運用進行了歸類,分別取個名字,讓學生能針對不同的題目能靈活應用。
:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數字與8相乘,這樣不公平,稱不上是平均分配法,學生印象很深刻,開始還有部分學生只選擇一個數與8相乘,歸納方法后學生都能正確應用了。
二、提取公因數法。如:25*40+25*60=25*(40+60)解題關鍵:找準兩個乘法式子中公有的因數,提取出公因數后,剩下的另一個數字該相加還是該相減,看符號就能確定了。
三:拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關鍵在于觀察那個數字最接近整百數,將它拆分成整百數加一個數或者整百數減去一個數,再應用懲罰的分配率進行簡算。有了歸類,學生再見到題目就能依據數字或運算符號的特征熟練進行乘法分配律的簡算了。
以這個為切入點,從而比較順利地引入新課,正好那天是植樹節所以我又創讓“打比方”成為數學課堂的閃光點。
凡是教過小學數學乘法運算律的教師都會體會到“乘法分配律”是乘法運算律中最難掌握的。學生在做練習題中錯誤最多。所以課前我對教材進行了身隊深度的剖析和思考。最后想出了用打比方突破課堂難點。雖然我們的“比方”有時看來似乎有點不恰當,但是這種比方對開發學生的想象力,推理能力以及拓展思路竟達到了意想不到的效果。我是這樣做的:
我由解決問題引出乘法分配律的等式,但我沒有急于給學生灌注這叫乘法分配率,而是寫下了這樣一個式子;{姐姐+我}×媽媽=姐姐×媽媽+我×媽媽然后提問:“誰能解釋為什么我這樣寫嗎?思維活躍的學生馬上就會回答:“因為媽媽是你和姐姐共有的,所以你和姐姐都有資格和媽媽在一起。”......學生們的學習興趣一下被調動起來了,他們明白了數學原來也是通俗易懂的。然后我再讓他們閱讀教材,給這個看似“不恰當”的比方定性為“乘法分配率”。歸納整合為字母算式:(a+b)×c=a×c+b×c,這時我再此讓學生展開聯想,讓他們學著老金剛怒目在自己身邊和生活中進行舉例,學生很快舉出(上衣+褲子)×人=上衣×人+褲子×人,(鉛筆+圓珠筆)×本子=鉛筆×本子+圓珠筆×本子等例子等不是十分貼切,但卻富有情趣,孩子在編例子的同時,其實已把握了乘法分配律的特征,學生就不會出現(a+b)×c=a×c+b的錯誤,在生動活潑的“打比方”中,既帶給了學生體驗學習的快樂,又讓我們枯燥深奧的數學概念成為形象而具體的理解形成,這種教法我在教“乘法交換律”時也用到過,我在結尾時把它總結為“左右搬家”然后講了個鋪子搬家的故事,學生們在津津樂道的故事中,在形象貼切的“打比方”中學懂了數學知識,收到了良好的效果,真正使數學課堂貼近生活。
設了這樣一個情境,“一共有25個小組參加植樹 乘法分配律在乘法的運算定律中是一個比較難乘法分配律的教學是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。對于乘法分配律的教學,我沒有把重點放在數學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。
以學生身邊熟悉的情境為教學的切入點,激發學生主動學習的需要,提出問題:共有多少名同學參加了這次植樹活動?通過兩種方法和算式的比較,使學生初步感知乘法分配律。
展示知識的發生過程,引導學生積極主動探究。先讓學生根據問題,用不同的方法解決,從而發現(4+2)×25=4×25+2×25這個等式,讓學生觀察,初步感知“乘法分配律”。然后要求學生照樣子說出幾組這樣的等式,引導學生再觀察,讓學生說明自己發現的規律。這樣學生經歷了“觀察、初步發現、舉例驗證、再觀察、發現規律、概括歸納”這樣一個知識形成過程。不僅讓學生獲得了數學基礎知識和基本技能,而且培養學生主動探究、發現知識的能力。
最后讓學生比較乘法交換律和結合律與分配率的最大區別,前者只在連乘的同一級運算中運用,后者是在兩級運算中運用,所以,看清題目是一級運算還是兩級運算對決定算法非常重要。這節課雖然成功引導學生發現了定律,但教完之后,在練習過程中還有部分學生掌握不好,在后一階段依然要加強練習,邊練習邊總結算法,使學生達到熟能生巧的程度。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇二
乘法分配律是北師大版小學數學四年級上冊第三單元最后一節的教學內容。本課是在學生已經學習掌握了乘法交換律、結合律,并能初步應用這些定律進行一些簡便計算的基礎上進行學習的。乘法分配律是本單元教學的一個重點,也是本單元內容的難點,教材是按照發現問題--提出假設--舉例驗證--歸納結論等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學生學習的難點。因此本節課不僅使學生學會什么是乘法分配律,更要讓學生經歷探索規律的過程,進而培養學生的分析、推理、抽象、概括的思維能力。
1.上課一開始,我創造性地使用教材,創設了訂校服的教學情境,使學生解決非常熟悉的生活問題、
2.在此基礎上,我并沒有急于讓學生說出規律,而是繼續為學生提供具有挑戰性的研究機會:“請你再舉出一些符合自己心中規律的等式”,繼續讓學生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內在的規律,從而概括出乘法分配律。
3.本節課有一定的亮點,但其中出現了不少問題:學生參與的積極性沒有預想中那么高。可能與我相對缺乏激勵性語言有關。也有可能今天的題材學生不太感興趣。
4.以后注意,學生不感興趣的材料,教師應該想辦法使呈現的這個材料變得能讓學生感興趣
乘法分配律是第三單元的一個難點。在理解、掌握和運用上都有一定難度。因此如何上好這一課,讓學生真正地理解乘法分配律,并在理解的基礎上運用好它?我覺得要注重形式上的認識,更要注重意義上的理解。因為單從形式上去記住乘法分配律是有局限性的,以后在運用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學生都能輕松運用乘法分配律。
北師大版的教材注重學生的探索活動,在探索中讓學生自己去發現的規律,才能讓他們真正地理解。本課是“探索與發現”的第三節課了,學生已經有了一定的探索能力。因此本課的設計完全圍繞著學生的自主活動在進行。
總體上我的教學思路是由具體——抽象——具體。在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規律。在學習中大膽放手,把學生放在主動探索知識規律的主體位置上,讓學生能自由地利用自己的知識經驗、思維方式去發現規律,驗證規律,表示規律,歸納規律,應用規律。
在教學過程中,也有不盡人意的地方,如雖然本節課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內容時,學生難以完整地總結出乘法分配律,另外還有部分學困生對乘法分配律不太理解,運用時問題較多等。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇三
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。它的教學重點是讓學生感知乘法分配律,知道什么是乘法分配律,難點是理解乘法分配律的意義,并會用乘法分配律進行一些簡便運算。所以本堂課我通過口算、讀算式、寫類似算式等多種方式讓學生去感知乘法分配律,最后由學生總結出乘法分配律概念。本堂課我感到比較滿意的地方,就是把課堂的主體權交給了學生,學生們都很主動積極的參與到學習中來,可是不足之處頗多。
1、在要求同學們去總結出乘法分配律的概念時老師沒有很好的引導,導致同學對乘法分配律特點的認識比較模糊。
2、課堂用語不夠簡潔。
結合學生的掌握情況我覺得教學此內容需要注意以下幾點:
1、區分乘法結合律與乘法分配律的特點,多進行對比練習。乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩數的和乘一個數或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算式有什么特征和區別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
2、學生進行一題多解的練習,經歷解題策略多樣性的過程,優化算法,加深學生對乘法結合律與乘法分配律的理解。
3、多練。針對典型題目多次進行練習。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇四
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律并能初步應用這些定律進行一些簡便計算的基礎上進行教學的。乘法分配律是本單元教學的一個重點,也是本單元內容的難點,因為乘法分配律不是單一的乘法運算,還涉及到加法的運算,是學生學習的難點。因此本節課不僅使學生學會什么是乘法分配律,更要讓學生經歷探索規律的.過程,進而培養學生的分析、推理、抽象、概括的思維能力。
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發現什么規律?通過觀察算式,尋找規律。讓學生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不是急于告訴學生答案,而是讓學生自己通過舉例加以驗證。學生興趣濃厚,這里既培養了學生的猜測能力,又培養了學生驗證猜測的能力。
這堂課由具體到抽象,大多需要學生體驗得來,上下來感覺很好,學生很投入,似乎都掌握了,可在練習時還是發現了一些問題。如:學生在學習時知道“分別”的意思,也提醒大家注意,但在實際運用中,還是出現了漏乘的現象。針對這一現象我認為在練習課時要加以改進。注重從學生的實際出發,把數學知識和實際生活緊密聯系起來,讓學生在不斷的感悟和體驗中學習知識。乘法分配律在乘法的運算定律中是一個比較難理解的定律,通過這一節課的學習,學生對乘法分配律的大致規律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規律,有部分學生就感到很為難了。感覺他們只能意會不能言傳。課本中關于乘法分配律只有一個求跳繩根數的例題,但是練習中有關乘法分配律的運用卻靈活而多變,學生們應用起來有些不知所措,針對這種現狀,我把乘法分配律的運用進行了歸類,分別取個名字,讓學生能針對不同的題目能靈活應用。
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數字與8相乘,這樣不公平,稱不上是平均分配法,學生印象很深刻,開始還有部分學生只選擇一個數與8相乘,歸納方法后學生都能正確應用了。
二、提取公因數法。如:25*40+25*60=25*(40+60)解題關鍵:找準兩個乘法式子中公有的因數,提取出公因數后,剩下的另一個數字該相加還是該相減,看符號就能確定了。
三、拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關鍵在于觀察那個數字最接近整百數,將它拆分成整百數加一個數或者整百數減去一個數,再應用乘法的分配率進行簡算。有了歸類,學生再見到題目就能依據數字或運算符號的特征熟練進行乘法分配律的簡算了。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇五
乘法分配律是四年級學習的重點,也是難點之一。它是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的,是一節比較抽象的概念課,教學是我根據教學內容的特點,為學生提供多種探究方法,激發學生的自主意識。
(1)通過學生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內容。
(2)初步感受乘法分配律能使一些計算簡便。
(3)培養學生分析、推理、概括的思維能力。
1、總體上我的教學思路是由具體——抽象——具體。
在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規律。在尋找規律的過程中,有同學是橫向觀察,也有同學是縱向觀察,老師都予以肯定和表揚,目的是讓學生從自己的數學現實出發,去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
2、從學生已有知識出發。
教師要深入了解各層次學生思維實際,提供充分的信息,為各層次學生參與探索學習活動創造條件,沒有學生主體的主動參與,不會有學生主體的主動發展,教師若不了解學生實際,一下子把學習目標定得很高,勢必會造成部分學生高不可攀而坐等觀望,失去信心浪費寶貴的學習時間。以往教學該課時都是以計算引入,有復習舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設計了一個植樹的情境,讓學生在一個寬松愉悅的環境中,走進生活,開始學習新知。這樣所設的起點較低,學生比較容易接受。
3、鼓勵學生大膽猜想。
猜想是科學發現的前奏。學生的學習活動中同樣不能沒有猜想,否則,主體性探究活動便缺少了內在的動力,自主學習的過程也成了失去目標的無意義操作。學生看到加法交換律和加法結合律,從直觀上產生了關于乘法運算定律的猜想。于是,接下來的舉例就成了驗證猜想的必需,無論猜想的結論是“是”還是“非”,學生的`思維一直是活躍著的,對學生都是有意義的。這個過程是教會學生
學習與掌握探索方法的過程,是培養學生學習品格的過程。
4、師生平等交流。
教學過程是師生共創共生的過程,新課程確定的培養目標和所倡導的學習方式要求
教師必須轉換角色。改變已有的教學行為,教師必須從“師道尊嚴”的架子中走出來,與學生平等地參與教學,成為共同建構學習的參與者。在以上教學片斷中,教師讓學生充分經歷學習過程,調動學生學習的熱情:猜想——傾聽——舉例——驗證,在欣賞學生的“閃光”處給學生“點撥”。教師沒有過多的講授,也沒有花大量的時間去刻意的創設教學情境,只是做喚醒學生主體意識的工作,引導學生大膽猜想,大膽表達。學生借助已有的知識經驗,自主解決新問題,使學生的主體地位得以體現。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇六
教學中通過解決“濟青高速公路全長多少千米”這一問題,結合具體的生活情景,得到了(110+90)x2=110x2+90x2”這一結果,教學中只注重了等式的外形特點,即兩個數的和乘一個數=兩個積的和。缺乏從乘法意義角度的理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法意義的角度理解,即左邊表示200個2,右邊也表示200個2。所以(110+90)x2=110x2+90x2。
乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩數的和乘一個數或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算是個有什么特征和區別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8)等。101×89①豎式計算;②(100+1)×89;③101×(80+9)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便,什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行簡算,乘法結合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學生的一種自主行為,并能根據題目的特點,靈活選擇適當的算法的目的。
針對典型題目多次進行練習。練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優生提出掌握的要求。如68×25+68+68×74,32×125×25等。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇七
《乘法分配律》一課是四年級上冊第四單元的教學內容,它相對于加法交換律、結合律,乘法交換律和結合律來說會比較抽象,學生較難于理解。因此把本課的教學重點定位為“探索并發現乘法分配律,理解乘法分配律的意義”,讓學生經歷“觀察算式——仿寫算式——解釋規律——應用規律”的過程。
課前創設比賽情境:老師能很快說出下面幾道題的得數,你信嗎?不信的同學敢跟我比一比嗎?(出示: 28×70+72×70 (125+10)×8 34×101)在我既對又快的說出結果時,孩子們都很驚訝,于是我因勢利導:剛才的比賽老師算得快,是因為老師有一個取勝的秘訣,它可以使計算簡便,你們想知道嗎?學完這節課,你就能發現其中的秘密。學生個個躍躍欲試,瞬間充滿探究的欲望,很好地激發了學生學習的興趣。
在解決“一共貼了多少塊磁磚?”中,學生列出了四個算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在讓學生觀察四個算式之后,先引導學生將四個算式進行分類并說明分類的標準。通過這個環節,學生對于相等的兩個算式的特征有了進一步的了解,知道將3×10+5×10和(3+5)×10分為一類,將4×8+6×8和(4+6)×8分為一類,是因為它們的數字都一樣,都是由3、5、10組成或是由4、6、8組成的,了解乘法分配律中有3個數;如將3×10+5×10和將4×8+6×8分一類,將(3+5)×10和(4+6)×8分為一類的,則從中明白一邊都是兩個積相加,另一邊則是兩個數的和與一個數相乘。通過這個分類活動,讓學生自主發現規律,為理解乘法分配律做了很好的.鋪墊。接著再讓學生仿寫算式,總結規律并解釋規律,最后再應用規律揭示課前比賽中老師獲勝的奧秘。
以往的教學經驗告訴我,學生對于乘法分配律的運用經常出錯,也很容易與結合律混在一起。為了防患于未然,在教學中創設了“小馬虎這樣做,你同意嗎?
(1)(6+30)×7 = 7×6+7×30
(2) 25×(4+60)= 25×4+60
(3) 16×5×8 = 16×5+16×8
(4) 15×3+15×7 = (15+15)×(3+7)”讓學生進行分析、判斷并修正。特別是第3題,讓學生對比乘法分配律和乘法結合律的數學模型,找出其中的區別,加以比較,從而發現模型左邊乘法結合律是兩個數的積,而乘法分配律是兩個數的和,而模型右邊乘法結合律是連乘的形式,而乘法分配律是兩個積相加的形式。這樣對比,加深對乘法分配律模型的認識和對其意義的理解。分析錯因后,還不忘讓學生說說:“你想對小馬虎說什么?”來提醒告誡學生,除了要養成認真細心的習慣外,還要運用好乘法分配律,注意分配律與結合律的區別,將錯誤扼制在搖籃里。
不足之處:雖然學生對于乘法分配律的理解比較到位,較好地達成了教學目標,但如能進行適時拓展,讓學生通過“兩個數的和與一個數相乘來聯想到兩個數的差與一個數相乘,兩個數的和除以一個數及兩個數的差除以一個數是否都可以應用乘法分配律這個數學模型?”會使課堂更豐滿,更有深度。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇八
乘法的分配律學生在本冊書中是接觸過的。譬如第42頁的應用題第7題,其中就滲透了乘法的分配律。在數學一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學生理解。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯系,寫出類似的幾組算式。發現規律,用語言或其他方式交流規律,給出用字母式子表示的運算律。這樣的安排,便于學生經歷觀察、分析、比較和根據的過程。能使學生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關鍵應是引導學生自主發現規律,用語言或其他方式與同伴交流規律。
在教學時,我是按照如上的步驟進行教學的。可是在我引導學生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯系與區別之后,學生就根本不知道從何下手。在他們的印象中,聯系就是根據乘法的意義來進行聯系。根本沒有從數字上面去進行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區別之后,學生也還是無法用語言來表達這一規律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的.形式之后,有很多的學生都能夠寫出來。
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經發現我們班上的學生根本無法發現其中的規律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現了問題。這些都要一一地去分析。
總之,這個關鍵今天并沒有完成好。
在引導學生把兩道算式拼成一道等式之后,我讓學生交流,結果學生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學生對乘法分配律的意義的理解。我認為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發,那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學也有了兩種的表達方式:即(a+b)×c=a×c+b×c和a×c+b=(a+b)×c。我都板書在黑板上,只是在規范的那一道上面畫了個星,告訴學生,乘法分配律的表示一般性采用的是這一條。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經過了第四題的練習時也是一樣。
今天教學了運算律——乘法分配律,對于例題的解決,學生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結自己的發現,學生會用字母表示出這一規律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把a*c+b*c改寫成(a+b)*c的正確率要比把(a+b)*c改寫成a*c+b*c的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74*(21+1)和74*21+74部分學生沒有發現它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74*21+74*1再運用乘法分配律變形成74*(21+1),學生理解后我補充77*99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了a*b+b=□(□○□)和a*b+b=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48*3+48*2來計算,卻不能靈活運用所學知識列成(3+2)*48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內容,但我也由此反思出我教學的不足之處,在例題教學時只關注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇九
本節課主要讓學生充分感知并歸納乘法分配律,理解其意義。教學中,我從解決實際問題(買衣服)引入,通過交流兩種解法,把兩個算式寫成一個等式,并找出它們的聯系。讓學生初步感知乘法分配律的基礎上再讓學生舉出幾組類似的算式,通過計算得出等式。在充分感知的基礎上引導學生比較這幾組等式,發現有什么規律?這里我化了一些時間,我發現學生在用語言文字敘述方面有些困難,新教材上也沒有要求,因此,只要學生意思說到即可,后來,我提了這樣一個問題,你能用自己喜歡的方式來表示你發現的規律嗎?學生立即活躍起來,紛紛用自己喜歡的方式來闡明自己發現的規律:有用字母的,有用符號的,大部分學生會說,沒問題。對于應用這一乘法分配律進行后面的練習還可以。如:書上第55頁的第5題,學生都想到用簡便方法去列式計算。整節課,學生還是學的比較輕松的。
關于乘法分配律早在上學期和本冊教材的'前幾個單元的練習題中就有所滲透,雖然在當時沒有揭示,但學生已經從乘法的意義角度初步進行了感知,以及初步體會了它可以使計算簡便。今天的教學就建立在這樣的基礎之上,上午第一節課我在自己班上,后來第二節課去聽了一根木頭老師的課,現在進行對比,談一談自己的感受:
首先,值得向一根木頭老師學習的是,學生的預習工作很到位。課前,學生就已經解決了“想想做做”第3、4題,學生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認識提升了,從解決實際問題的角度進一步感受了乘法分配律。而第4題通過計算比較,突現了乘法分配律可以使計算簡便,體現了應用價值。我在課前沒有安排這樣的預習,因此課上的時間比較倉促。
其次,我在學生解決完例題的問題后,還讓學生提了減法的問題,這樣做的目的是讓學生初步感受對于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴展了學生的知識面,同時又為明天學習簡便運算鋪墊。
最后,我覺得在指導學生在觀察比較65×5+45×5和(65+45)×5的聯系和區別時,可以指導學生從數和運算符號兩個角度觀察,學生得出結論后,其實已經感知到了算式的特點,然后讓學生用自己的方式創造相同類型的等式,可以是數、字母、圖形的等,值得欣慰的是學生能用各種方式正確表示出來,然后再揭示數學語言,學生的認知產生飛躍。
不足的是,學生很難用自己的語言表達乘法分配律的含義,小組交流時,有些同寫還是充當旁觀者的角色,有待于教師科學地引導。
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇十
這兩天學習乘法分配律,孩子們的普遍感覺是比乘法的交換律和結合律應用起來難一些。作業中的錯誤也很多,主要錯在一下幾點:
1、78×(100+5)
=78×100+5…………這種錯誤在于學生沒有教好的理解
乘法分配律:括號外面的數要分別乘括號內的兩個數,再把兩個積相加。
2、85×99+85
=85×(99+85)…………這種錯誤的原因在于個別孩子
對式子中的數據理解不好,不明白加號后面的
85表示的是1個85,可以看成85×1。
3、104×25
=(100+4)×25
=104×25…………這種錯誤的原因在于有的孩子對乘法分配律的引用不熟練,變式之后又按照順序進行計算,回到了原式。
4、76×54+76×47-76
=76×(54+47)-76…………有這種做法的孩子屬于對乘法分配律的應用不夠靈活,當遇到部分積較多的時候,不能較好的應用分配律進行簡便算。
5、25×32×125
=(25×4)+(8×125)…………個別學生在做題時有一種慣性,學完乘法分配律之后,所有的題目都用分配律進行計算,不能靈活的選用運算律進行簡便計算。
綜合學生出現的錯誤之處,可見大部分孩子對運算律能夠較
好的理解,只是在應用時不能夠靈活的應用。直接應用規律進行簡便算的能準確理解,而需要變式的題目則不能較好的應用,也有個別孩子因為理解不清而不會應用。根據學生的情況,我采用相應的措施,以便讓孩子們真正理解,靈活應用。
對分配律不理解的孩子,我進行個別的指導。具體是舉一些相關的實際問題,讓孩子用兩種不同的方法進行解題,在解題、比較的基礎上理解兩部分積表示的意義,理解括號外的數要分別乘括號內兩個數的道理,這樣借助具體事例,形象的進行理解、概括,有助于學生對乘法分配律的`掌握。
針對有的孩子把分配律和結合律混淆的情況,我設計針對性的練習,讓孩子在練習中記性比較、分析,從而掌握。如:
25×3×17×4 25×3+17×25
比較兩個算式的不同之處,說說算是中分別有什么運算,運用什么運算律才能簡便計算,這樣在比較的過程中學生能夠慢慢區分乘法結合律與乘法分配律的不同,繼而再靈活應用規律進行計算。
針對學生不能靈活應用規律進行計算的問題,我設計針對性的練習,讓孩子在練習中說說自己的想法,比一比怎么計算更加簡便,這樣在比較、練習的過程中進一步掌握簡便計算的方法。
如:125×48
因為剛學過乘法分配律,學生在計算125×48時,也應用分配律:125×40+125×8,針對這樣的情況,我讓學生再想一想還有沒有其它簡便計算的方法,引導學生用乘法結合律進行簡便計算:125×8×6,再比一比:哪種方法更簡便?這樣在比較的過程中引導學生體會:用簡便方法進行計算時,一定要先觀察題目中各個數的特點,根據題目的特點選擇合適的運算律進行簡便計算,這樣才能保證計算的簡便與正確。
通過對孩子錯因的分析與相應的指導、練習,孩子們對乘法的運算律理解掌握也越來越好,作業的錯誤明顯減少。看來,只要我們善于分析、引導,只要我們對孩子有耐心、有信心,孩子們就一定能夠學會、學好!
四年級下冊乘法分配律的教學反思 乘法分配律教學反思篇十一
乘法分配律是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律。如何教學能使學生較好的理解乘法分配律的內涵,并能正確的運用定律進行簡便運算呢?我做了一下幾點嘗試。
上課教師先出示:(1)8×(125+11) (2)(100+1)×23
(3 )648×5+352×5
老師和同學們做一個比賽,王老師口算,你們用計算器算,看看誰能獲。
結果教師又快又對,學生都很奇怪,教師順勢導入:同學們都特別想知道在比賽過程中,學生用計算器都沒有老師口算得快的原因嗎?是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。
這樣的導入讓學生充滿了求知的欲望,激發了學習的熱情。
出示例題后,學生獨立解答,然后教師出示思考問題,學生自主探究。
討論:
1、這兩種方法有什么不同?兩個算式的結果如何?用什么符號連接?
2、那么等號連接的這兩個算式有什么特點和聯系呢?請同學們帶著老師給出的`三個問題展開討論。(課件出示問題)生a:我發現左邊括號外的那個數,寫到右邊都要乘兩次。
生b:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
整個教學過程通過學生觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內容。
在本課的練習設計上,我力求有針對性,有坡度,同時也注意知識的延伸。練習的形式多樣,課本上的填空題解決以后,設計了判斷題和練習題,把學生易出錯的問題提前預設好,而且通過練習讓學生明白乘法分配律也可以兩個數的差,也可以是三個數的和,使學生對乘法分配律的內容得到進一步完整,也為后面利用乘法分配律進行簡算打下伏筆。為了讓學生初步感受乘法分配律能使一些計算簡便,我特意把開始和老師比賽的題目讓學生運用今天所學知識進行計算,學生非常有興趣,在練習中培養了學生分析、推理、概括的思維能力。
總之,在本堂課中新的教學理念有所體現,是一節本色的數學課堂。但在具體的操作中還缺乏成熟的思考,自主探究環節對問題的設計不夠簡潔,還可以再做斟酌。實際分配律的揭示過程與教案設計順序有些出入,感覺效果沒有預想的好,上課時對于教案的熟悉程度還有待加強。